Рулевые механизмы колесных тракторов

Рулевой механизм, который преобразует вращательное движение рулевого колеса в угловое перемещение рулевой сошки, состоит из рулевого колеса с валом и рулевой передачи.

Рулевой механизм не должен препятствовать стабилизации прямолинейного движения и передавать толчки со стороны дороги на рулевое колесо (должен быть необратимым).

По конструкции рулевые механизмы разделяют на шестеренчатые, червячные, винтовые, кривошипные, смешанные.
Шестеренчатые механизмы в настоящее время на тракторах почти не применяют, так как они не обеспечивают при малых габаритных размерах необходимое передаточное число и, кроме того, все они обратимы.

Рис. 1. Рулевые механизмы колесных тракторов:

а — червяк и радиальный сектор; б — червяк и боковой сектор; в — червяк и ролик; г — винт и шип

Наибольшее распространение получили червячные механизмы, выполненные в различных вариантах: червяк и радиальный сектор (рис. 1, а), червяк и боковой сектор (рис. 1, б), червяк и ролик (рис. 1, в). Из-за высокой износостойкости и КПД чаще всего применяют механизмы в виде червяка и ролика. В червячном рулевом механизме необходимо предусматривать двойное регулирование: изменение осевого зазора прокладками под нижней крышкой картера и регулирование зацепления червячной пары перемещением оси рулевой сошки с укрепленным в ней роликом (ось сошки устанавливают на эксцентрике).

Для большинства рулевых механизмов КПД зависит от направления передачи крутящего момента: при передаче момента от рулевого колеса (прямой КПД) КПД выше, чем при передаче момента от направляющих колес (обратный КПД).

Для червячного механизма с радиальным роликом прямой и обратный КПД соответственно составляют

ηП = {tg(beta)}/{tg(beta+mu}); ηO = {tg(beta-mu})/{tg(beta)};

где μ — угол трения; β — угол подъема винтовой линии червяка.

Высокий прямой КПД облегчает управление трактором, а большой обратный КПД уменьшает обратимость механизма.

Изменяя угол β, можно регулировать обратимость механизма.

Так, при β≤μ передача полностью необратима, но при этом полностью нарушается весовая стабилизация прямолинейного движения машины.

Для согласования этих противоречивых положений принимают μ=8÷12°.
В шестеренчатом рулевом механизме прямой и обратный КПД равны. На передачу «обратных» ударов помимо обратимости рулевого механизма влияет жесткость рулевого привода — элементов, расположенных между рулевым и направляющими колесами. Снижая жесткость рулевого привода, можно уменьшать «обратные» удары, но при этом будет снижаться устойчивость прямолинейного движения трактора из-за возникающих колебаний направляющих колес.

В существующих конструкциях упругость рулевого привода (отношение угла поворота рулевого колеса к моменту на рулевом колесе при закрепленных направляющих колесах) с=1,5÷2 град/(Н·м).

Уменьшить силы «обратных» ударов можно также, уменьшив плечо обкатки колес. При его нулевом значении «обратные» удары на рулевое колесо передаваться не будут, но при этом не будет обеспечена весовая стабилизация прямолинейного движения машины. [Конструирование и расчет тракторов. Барский И.Б. 1980 г.]

Похожие материалы

Рулевое управление колесных тракторов

Рулевое управление предназначено для поддержания и изменения направления движения колесного трактора в соответствии с действиями тракториста. Оно представляет собой часть комплекса механизмов и агрегатов системы управления движением трактора.

Поворот трактора. Существуют два принципиально разных способа поворота трактора при его движении:
1) поворотом в плане передних колес относительно задних (основной способ);
2) изменением скоростей поступательного прямолинейного движения правого и левого колесных движителей со всеми ведущими колесами одинакового диаметра (по способу поворота гусеничного трактора).

Для поворота колесных тракторов с полугусеничным ходом обычно совмещаются оба способа: передние управляемые колеса — поворотом в плане, а полугусеничный ход — изменением поступательных скоростей гусениц. Совмещенный способ поворота иногда применяют и для пропашных тракторов с целью получения небольшого радиуса поворота, когда при повороте передних управляемых колес притормаживают одно из задних ведущих колес, порой до полной его остановки.

При первом способе поворота на поворачиваемые колеса действуют боковые реакции грунта, которые и заставляют изменять направление движения остова трактора, а при втором — на ведущие колеса противоположных бортов фактора и заставляют их вращаться с разными угловыми скоростями, что вызывает появление на остове поворачивающегося момента.

Основным недостатком второго способа поворота является обязательное боковое проскальзывание протектора шины относительно поверхности пути. Это вызывает повышенный износ шин, сильное боковое нагребание на них земли при повороте на рыхлых грунтах и появление заноса остова при повороте на повышенной скорости движения трактора. Поэтому этот способ поворота не применяют на сельскохозяйственных и большинства промышленных тракторов. Его используют иногда на мощных относительно тихоходных колесных промышленных тракторах специального назначения с короткой базой и широкой колеей или на небольших малогабаритных колесных тракторах, в основном коммунального назначения.

Управление при втором способе поворота колесного трактора аналогично управлению гусеничным трактором.
Принципиальные схемы поворота колесных тракторов по основному их способу представлены на рис. 1.

Рис. 1. Схемы поворота колесных тракторов

Следует отметить, что для обеспечения качения всех колес трактора при его повороте без их бокового скольжения необходимо, чтобы оси при условном продолжении пересекались в одной общей точке — центре поворота.

На рис. 1,а представлена схема поворота трактора с колесной формулой ЗК2 с поворотной передней осью 1, на которой установлено одно управляемое колесо или два спаренных, установленных под углом друг к другу так, что в контакте с почвой они представляются как одно целое. При полностью заторможенном ведущем колесе 2 радиус поворота

R= 0,5В,

где В — поперечная база трактора.
На рис. 1, б представлена схема поворота трактора 4К2 с неповоротной передней осью 1, на которой установлены поворотные цапфы 2 управляемых колес 3. Для выполнения указанного условия качения управляемых колес они поворачиваются на разные углы (α>&#94б;).

По аналогичной схеме производится поворот трактора 4К4а. Для трактора 4К4б наиболее характерна схема поворота (рис. 1,в) путем взаимного углового смещения двух шарнирно сочлененных полурам 1 их остова, относительно которых ведущие колеса 2 неповоротны. Минимальный радиус поворота R ограничен возможностью контакта колес 2 одного борта трактора, как показано на схеме.

Некоторые конструкции тракторов 4К46 выполняются с передними 1 (рис. 1, г) и задними 2 поворотными ведущими колесами относительно остова 3. При этом, как правило, пологие повороты осуществляются посредством только передних ведущих колес 1, а более крутые — продолжением поворота передних колес и одновременным поворотом задних ведущих колес 2 в противоположную сторону.

В некоторых конструкциях факторов колеса поворачиваются не только по рассмотренной схеме (см. рис. 1, г), но и могут одновременно все поворачиваться на один и тот же угол α (рис. 1, д). Такое «крабовое движение» позволяет остову 1 одновременно двигаться вперед и в сторону без его поворота в плане. Оно необходимо некоторым специальным тракторам для выполнения соответствующих технологических операций.

Рассмотренные повороты тракторов осуществляются механизмами и агрегатами рулевого управления, к которым, помимо общих требований, предъявляют ряд специальных требований:
они должны обеспечивать устойчивость прямолинейного движения и хорошую маневренность трактора в любых условиях его эксплуатации;
не создавать условия для проскальзывания управляемых колес;
должны быть легкими в управлении, надежными в работе и удобными в обслуживании.

Рулевое управление состоит из рулевого привода и рулевого механизма (в большинстве случаев с усилителем).

Рулевой привод служит для установки управляемых поворотных колес или полурам остова с неповоротными колесами в положения для их качения без бокового скольжения при повороте и прямолинейном движении трактора.

Рулевой механизм преобразует повороты рулевого колеса в необходимые перемещения элементов рулевого привода для выполнения заданного направления движения трактора.

По принципу действия рулевые управления применяемые на тракторах можно классифицировать в основном на механические, механические с усилителями и гидрообъемные.

В механических рулевых управлениях, применяемых на легких колесных тракторах класса 0,6 и ниже, рулевой привод кинематически связан с рулевым механизмом и поворот управляемых колес осуществляется только мускульной силой тракториста, приложенной к рулевому колесу.

Для рулевого управления различают два передаточных числа: угловое (кинематическое) и силовое.
Угловое (кинематическое) передаточное число и представляет собой отношение угла поворота рулевого колеса к углу поворота управляемого колеса трактора (для ЗК2) или среднему углу поворота управляемых колес (для 4К2 и 4К4а). Его можно представить, как произведение двух передаточных чисел — рулевого механизма им и рулевого привода ип:

и = имип.

При этом следует отметить, что при повороте управляемых колес передаточное число рулевого привода всегда величина переменная, так как меняется положение рычагов механизма поворота. Передаточное число рулевого механизма также может быть переменной величиной, но в большинстве случаев оно постоянное. Угловое передаточное число всегда является величиной переменной.
В существующих конструкциях им = 18…40.
Передаточное число рулевого привода ип зависит от соотношения плеч привода. В процессе поворота колес плечи рычагов изменяются. В выполненных конструкциях ип изменяется незначительно.

Величина ип = 0,85…2,0.

Максимальный угол поворота управляемых колес обычно не превышает 40…55°, максимальный поворот рулевого колеса в каждую сторону в существующих конструкциях тракторов составляет 1,5-3,0 оборота, и угловое (кинематическое) передаточное число рулевого управления и = 12… 30.

Силовое передаточное число и представляет собой отношение момента МC сопротивления повороту управляемых колес со стороны грунта к моменту МР, приложенному к рулевому колесу для его поворота.

и’ = МC / МР.

Механическое рулевое управление с усилителем — это такое устройство, в котором рулевой привод также кинематически связан с рулевым механизмом, но поворот управляемых колес или полурам остова тракторов 4К46 производится, в основном, не мускульной силой человека, а специальным усилителем, управляемым трактористом.

При отказе от работы усилителя поворот трактора в большинстве случаев совершается механической частью рулевого управления, но при больших затратах времени и усилия на вращение рулевого колеса. Подобные рулевые управления установлены на большинстве отечественных колесных тракторов класса 0,9 и выше.

При проектировании рулевого управления ограничивается как минимальное (30 Н), так и максимальное (120 Н) усилие на рулевом колесе при движении трактора. Ограничение минимального усилия необходимо, чтобы тракторист не терял «чувства дороги». При выходе из строя усилителя для поворота управляемых колее трактора на месте на бетонной дороге усилие на рулевом колесе не должно превышать 400 Н.

В гидрообъемном рулевом управлении отсутствует механическая связь рулевого привода с рулевым механизмом. Исполнительным элементом рулевого привода является гидроцилиндр двойного действия, соединенный трубопроводами с управляющим элементом рулевого управления — насосом-дозатором. Последний вместе с рулевым колесом представляет собой рулевой механизм, который может быть установлен в любом месте, наиболее удобном для тракториста.

Гидрообъемное рулевое управление получило широкое распространение на колесных тракторах. [Тракторы. Конструкция. Под общ. редакцией И.П. Ксеневича, В.М. Шарипова. 2001 г.]

Похожие материалы

Рулевое управление

Рулевое управление предназначено для поддержания движения трактора (автомобиля) по заданному водителем направлению.

Рулевое управление должно быть легким и удобным, для чего усилие на рулевом колесе и угол его поворота должны быть ограниченными. Кроме того, необходимо, чтобы рулевое управление обеспечивало правильную кинематику поворота и безопасность движения, а поворот колес происходил так, чтобы их качение не вызывало проскальзывания.

Рис. 1. Кинематика поворота колесных тракторов и автомобилей:

а — передних колес относительно переднего моста; б — одинарного переднего колеса; в — одной части рамы относительно другой части, соединенных шарниром.

На тракторах и автомобилях управление осуществляется путем поворота: передних колес относительно переднего моста (рис. 1, а, 6) — на универсально-пропашных тракторах 4≠4, 4≠2, З≠2, всех легковых и грузовых автомобилях; полурам, образующих несущую систему трактора, совместно с колесами относительно соединяющего их вертикального шарнира (рис. 1, в) — на тракторах 4=4 общего назначения (К-701, Т-150К); передних и задних колес относительно их мостов (все колеса управляемые) — на тракторах 4=4, автомобилях высокой проходимости.

В зависимости от расположения рулевого колеса различают правое и левое рулевое управление. При правостороннем движении транспорта по дорогам и улицам левое рулевое управление способствует лучшей обзорности пути.

Рис. 2. Типы рулевых управлений:

а — рулевое управление с совмещенным рулевым колесом и рулевым механизмом, цельной трапецией и механическим приводом; б — рулевое управление с раздельным рулевым колесом и рулевым механизмом, расчлененной трапецией и механическим приводом с гидроусилителем: 1 — рулевое колесо; 2 — сошка; 3 — рулевой механизм; 4 — продольная тяга; 5, 7 — поворотные рычаги; 6 — поперечная тяга; 8 — цапфа колеса; 9 — карданная передача; 10 — гидроусилитель; 11 — поворотный вал сошки; в — объемное гидравлическое рулевое управление (ОГРУ): 1 — насос питания; 2 — предохранительный клапан; 3 — насос-дозатор; 4 — рулевое колесо; 5 — гидравлический силовой цилиндр; 6 — трубопроводы; 7 — поперечная тяга; 8 — бак.

Рулевое управление состоит из рулевого механизма 3 (рис. 2, а) и рулевого привода. Посредством рулевого механизма усилие, приложенное водителем к рулевому колесу 1, передастся рулевому приводу. Рулевой привод осуществляет передачу усилий от рулевого механизма к управляемым колесам или полурамам трактора. Рулевые приводы могут быть механическими, гидравлическими и электрическими. У автомобилей и тракторов с передними управляемыми колесами механический привод передает усилие сошкой 2 к поворотным рычагам 5, 7 рулевой трапеции. Рулевая трапеция, состоящая из поперечной рулевой тяги 6 с поворотными рычагами 5 и 7, является частью рулевого привода и предназначена для достижения необходимого соотношения между углами поворота управляемых колес.

В качестве рулевых механизмов используются передачи червяк — ролик (ГАЗ-53А, УАЗ, ГАЗ-66, «Волга», «Москвич», «Жигули», «Запорожец»), червяк — сектор (КрАЗ-257, Урал-375Д, МАЗ-200, К-700, К-701, Т-150К, МТЗ-80, МТЗ-82, Т-40М, Т-40АМ и др.), винт с гайкой (ЗИЛ-130, Т-25А), винт с гайкой и рейка с зубчатым сектором (ЗИЛ-131, КрАЗ-255Б, БелАЗ-540), конические шестерни (Т-16М).

По взаимному расположению рулевого колеса и рулевого механизма различают рулевые управления с совмещенным (рис. 2, а) или раздельным (рис. 2, 6) рулевым колесом и рулевым механизмом. При совмещенном рулевом управлении ведущий элемент рулевого механизма 3 устанавливается на нижнем конце вала рулевого колеса 1, а при раздельном соединяется с ним через карданную передачу 9. К первому типу относятся рулевые управления автомобилей ГАЗ-5ЗА, «Волга», «Жигули», «Москвич», «Запорожец», тракторов К-701, Т-150К, Т-25А; ко второму — автомобилей БелАЗ-540, ЗИЛ-131, ЗИЛ-130, УАЗ, тракторов МТЗ-80, Т-40М/40АМ, Т-28Х4М и др.

По месту расположения рулевой трапеции относительно управляемого моста различают рулевые приводы с передним (рис. 2, в) и задним (рис. 2, а) расположением трапеции. Трапеция с передним расположением применена на автомобилях ГАЗ-66, УАЗ-452, тракторах ЮМЗ-6М/6Л; с задним — на автомобилях ГАЗ-5ЗА, ЗИЛ-130, УАЗ-451М, тракторах МТЗ-80/82, Т-40М/АМ и др.

Рычаги 5 и 7 (рис. 2, а) поворотных цапф объединяются одной поперечной тягой 6 или с двумя шарнирами, также соединенными между собой тягой. В первом случае тралению называют цельной, а во втором — расчлененной. Расчлененные трапеции применяются на легковых автомобилях, имеющих независимую подвеску управляемых колес, а также на колесных универсальных тракторах МТЗ-80, Т-40М. В рулевом управлении с цельной трапецией привод к трапеции осуществляется продольной тягой 4; привод к расчлененной трапеции — продольной тягой, продольным валом сошки или сошкой 2, установленной на поворотном валу 11 рулевого механизма.

Рулевые управления оснащаются усилителями рулевого привода, предназначенными для создания дополнительного усилия с целью облегчения управления трактором (автомобилем). Исключение составляют легковые и некоторые грузовые автомобили и тракторы тяговых классов 6—9 кН. Наиболее распространены гидравлические и пневматические усилители.

Гидравлические усилители разнообразны по конструкции, их различают по целевому использованию насоса, расположению агрегатов и возможности применения механического привода в качестве дублерного.

По целевому использованию насоса усилители делятся на автономного и совмещенного действия. У первых насос питает только гидравлическую систему усилителя, у вторых также и других потребителей. Первая группа усилителей более распространена и применяется на тракторах МТЗ-80/82, Т-150К, К-701, автомобилях ЗИЛ-130, ЗИЛ-131, ГАЗ-66 и др. Ко второй группе относятся усилители тракторов Т-40М/40АМ (насос используется одновременно для гидравлической навесной системы), автомобилей БелАЗ (насос приводит в действие гидросистему опрокидывающего механизма кузова) и др.

По расположению агрегатов различают следующие схемы: гидроцилиндр распределитель и рулевой механизм образуют общий узел (МТЗ-80, Т-40М, ЗИЛ-130 и др.); рулевой механизм и распределитель выполнены в одном агрегате, гидроцилиндр — раздельно (Т-150К, К-701); гидроцилиндр и распределитель выполнены в общем узле отдельно от рулевого механизма (МАЗ-500, БелАЗ-540 и др.); гидроцилиндр, распределитель и рулевой механизм являются отдельными узлами (ГАЗ-66).

По применению механического привода в качестве дублерного различают схемы, позволяющие использовать механический привод при неработающем двигателе (или отказе усилителя) и исключающие такую возможность. К первым относятся все тракторы и автомобили с передними управляемыми колесами (см. рис. 1. а, б), ко вторым — тракторы 4=4 с шарнирно сочлененной рамой (К-701, Т-150К).

Новые конструкции объемного гидравлического рулевого управления (ОГРУ) выполняются по двум типовым схемам: одноконтурной, для тракторов класса 9—20 кН и двухконтурной для тракторов класса 30—50 кН. Объемное гидравлическое рулевое управление (одноконтурное) включает насос 1 (см. рис. 2, в), насос-дозатор 3, выполненный в одном узле с рулевым колесом 4, гидравлический силовой цилиндр 5, предохранительный клапан 2 и соединяющие эти устройства трубопроводы 6. Насос-дозатор 3 регулирует поступление рабочей жидкости в гидравлический силовой цилиндр 5 при работающем насосе питания 1 и может использоваться в качестве насоса питания для управления трактором при неработающем двигателе. Эта схема имеет ряд преимуществ: механические связи минимальны (только трапеция управления), обеспечивается управление машиной при неработающем двигателе и отключенном насосе питания; уменьшается масса конструкции; устраняется многообразие устройств рулевого управления тракторов. [Гуревич А.М., Сорокин Е.М. Тракторы и автомобили. 1978 г.]

Похожие материалы