Тракторные генераторы

Генератор — электрическая машина, преобразующая механическую энергию первичного двигателя в электрическую энергию. Генератор служит для питания потребителей электрической энергией и зарядки аккумуляторной батареи при определенной частоте вращения коленчатого вала двигателя.

Привод генератора осуществляется от коленчатого вала клиноременной передачей, имеющей постоянное передаточное число, поэтому частота вращения генератора находится в прямой зависимости от скоростного режима двигателя. А так как частота вращения коленчатого вала у тракторных двигателей может изменяться от минимальной до максимальной в отношении 1:3,5, а у автомобильных еще больше (без регуляторов до 1:8), то для поддержания на клеммах генератора напряжения в заданных пределах устанавливают регуляторы напряжения.

Поскольку тракторные генераторы работают в более тяжелых условиях, чем автомобильные (значительная запыленность окружающей среды, сильные вибрации и т.п.), их делают закрытыми: внутренняя их полость защищена глухими крышками; тепло отводится в основном через поверхности корпуса и крышек. Для лучшего охлаждения применяют вентиляторы внешнего обдува.

Автомобильные генераторы изготовляют в защищенном исполнении — поток воздуха, создаваемый вентилятором, проходит через внутреннее пространство корпуса и специальные окна в крышках, интенсивно охлаждая нагревающиеся части.

Генераторы характеризуются родом тока, напряжением, мощностью, начальной (без нагрузки), при которой достигается номинальное напряжение, и максимальной (под нагрузкой) частотами вращения.

На тракторах и автомобилях устанавливаются трехфазные синхронные генераторы переменного тока с электромагнитным возбуждением. Их магнитное поле и ротор вращаются с одной и той же частотой — синхронно. Основной магнитный поток создается обмоткой возбуждения, соединенной с аккумуляторной батареей, или обмотками статора (питаемой через выпрямитель). Возможен также режим работы генератора с предварительно намагниченной магнитной системой. Катушки статора образуют трехфазную обмотку, соединенную в звезду, реже в треугольник.

Различают генераторы контактного и бесконтактного типов.

В контактном генераторе ток возбуждения подводится к обмотке ротора через контактные кольца и щетки. В отличие от генераторов постоянного тока здесь не происходит искрения, так как кольца и щетки не выполняют функций коммутации тока. В бесконтактных генераторах нет контактных колец, щеток и вращающихся обмоток; они отличаются высокой надежностью и выдерживают тяжелые условия эксплуатации, но по габаритам и массе несколько больше генераторов контактного типа.

Для зарядки аккумуляторной батареи и питания некоторых потребителей необходим постоянный ток; часть же потребителей может работать как на постоянном, так и на переменном токе. В автотракторном электрооборудовании принято выпрямление генераторного тока, для чего предусмотрены выпрямители, обычно встроенные в генератор.

Генераторы переменного тока отличаются способностью заряжать аккумуляторную батарею на малой частоте вращения холостого хода двигателя. Относительно высокая частота вращения генератора в этом режиме позволяет ему развивать достаточную мощность, тем самым освобождая от работы аккумуляторную батарею. У генераторов же постоянного тока номинальная частота вращения якоря ограничена искрением под щетками; когда же двигатель работает на малой частоте вращения, напряжение генератора меньше напряжения аккумуляторной батареи, и вырабатываемый им ток поступает только в цепь возбуждения и обмотки реле-регулятора.

Установочная мощность генератора определяется в зависимости от тягового класса трактора или грузоподъемности автомобиля и составляет 200—1000 Вт.

Генераторы переменного тока с электромагнитным возбуждением и контактным устройством. На автомобилях (ГАЗ-53А, ЗИЛ-130, КамАЗ, МАЗ, КрАЗ и т. д.) и некоторых тракторах (например, К-701) применяют трехфазные синхронные генераторы переменного тока (Г250, Г271, Г272 и др.) с электромагнитным возбуждением и контактным устройством. Генераторы выполнены по единой схеме и отличаются в основном конструктивными особенностями и электрическими характеристиками.
Генератор Г272
Рис. 1. Генератор Г272: 1, 12 — крышки; 2 — контактные кольца; 3 — щеткодержатель; 4 — пружина; 5 — щетки; 6 — полюсные наконечники; 7 — крыльчатка; 8 — шкив; 9 — вал; 10, 19 — шариковые подшипники; 11 — втулка; 13 — статор; 14 — обмотка возбуждения; 15 — катушка статора; 16 — зажим; 17 — концы обмотки возбуждения; 18 — выпрямительный блок.

Генератор Г272 автомобилей КамАЗ состоит из статора 13 (рис. 1), ротора, крышек 1 и 12, контактного устройства, выпрямительного блока 18, приводного шкива 8 и других элементов.

Сердечник статора собран из листов электротехнической стали в пакет с равномерно распределенными по окружности 18 зубцами и закреплен винтами между крышками 1 и 12 из алюминиевого сплава. На зубцах размещены восемнадцать обмоточных катушек 15, закрепленных в пазах статора текстолитовыми клиньями. Катушки намотаны проводом диаметром 1,16 мм (восемнадцать витков) и образуют три фазы, включенные звездой. В каждую фазу входят шесть последовательно соединенных катушек, концы которых присоединены к трем зажимам 16 выпрямительного блока 18.

Ротор состоит из вала 9, контактных колец 2, двух полюсных наконечников 6 втулки 11 и обмотки возбуждения 14. Полюсные наконечники стальные, шестиполюсные, северной (N) и южной (S) полярности. Расположение таково, что наконечники одной полярности перемещаются между наконечниками противоположной полярности. Между полюсными наконечниками находится втулка 11 обмотки возбуждения 14, содержащей 1490 витков провода диаметром 0,51 мм. Ротор вращается в шариковых подшипниках 19 и 10 (закрытого типа, не требующие смазки), установленных внешними обоймами в крышках генератора. Благодаря крыльчатке 7 на шкиве 8 и прорезям в крышках для охлаждения генератора создается проточная вентиляция.

Контактное устройство образовано двумя медными контактными кольцами 2, щеткодержателем 3, двумя графитовыми щетками 5. прижимаемыми пружинами 4 к контактным кольцам. К изолированным от вала кольцам припаяны концы 17 обмотки возбуждения 14. Одна (изолированная от массы) щетка соединена с зажимом Ш генератора, а вторая через корпус генератора — с массой.

В крышку 1 встроен полупроводниковый выпрямительный блок 18 из шести кремниевых диодов, соединенных в мостовую схему. На крышку со стороны выпрямителя выведены отрицательный и изолированный от массы положительный зажимы. К положительному зажиму присоединены контактной пластиной размещенные на изолированной от массы панели положительные зажимы диодов прямой полярности; отрицательный зажим замыкает на массу контактную пластину диодов обратной полярности.

Техническое обслуживание генератора Г272 (на примере автомобилей КамАЗ) заключается прежде всего в очистке его генератора от грязи, проверке натяжения приводного ремня, затяжке болтов крепления генератора и гайки крепления шкива (ТО-1). Во время ТО-2 проверяют затяжку стяжных болтов генератора и состояние контактных соединений проводов. Через 50 тыс. км пробега (25 тыс. км для нового автомобиля) снимают щеткодержатель 3, проверяют свободное перемещение щеток в направляющих отверстиях, осматривают и при необходимости зачищают контактные кольца 2, испытывают упругость пружин 4. Щетки заменяют, если их высота от опорной плоскости пружины меньше 8 мм.

Бесконтактные индукторные генераторы переменного тока с электромагнитным возбуждением.
На ряде тракторов установлены закрытые бесконтактные трехфазные индукторные генераторы переменного тока типов Г304, Г305, Г306 со встроенными выпрямителями. Генераторы Г304 и Г305 унифицированы по основным деталям и отличаются в основном обмоточными данными. Характерная особенность этих генераторов — отсутствие щеточных контактов и вращающихся обмоток.

Генератор Г306, который относится к усовершенствованным бесконтактным генераторам переменного тока с электромагнитным возбуждением, состоит из статора 5 (рис. 2, а) с обмоткой 7, ротора 6, задней 3 и передней 9 крышек, обмотки возбуждения 8, выпрямительного блока 10 шкива 11 с крыльчаткой и лап крепления.
Генератор Г306
Рис. 2. Генератор Г306: а — устройство: 1 — болт выводной клеммы; 2 — изоляционная колодка; 3 — задняя крышка; 4 — стяжной болт; 5 — статор; 6 — ротор; 7 — обмотка статора; 8 — обмотка возбуждения; 9 — передняя крышка; 10 — выпрямительный блок БПВ-30; 11 — шкив с крыльчаткой; 12, 15 — шариковые подшипники; 13 — втулка ротора; 14 — планка; 16 — задняя лапа; б — электрическая схема: ОВ — обмотка возбуждения генератора; ОС — обмотка статора генератора; ВП — выпрямитель: 1 — диоды прямой полярности; 2 — диоды обратной полярности; А — амперметр; ВМ — выключатель массы; В, Ш, М — выводные клеммы; Т — транзистор; Э — эмиттер; К — коллектор; Б — база; Д1 — запирающий диод; Дг — диод гасящего контура; Др — разделительный диод; РЗ — реле защиты; FЗy — удерживающая обмотка реле защиты; P3о — последовательная обмотка реле защиты; РЗв — встречная обмотка реле защиты; РН — регулятор напряжения; ППР — переключатель (винт) сезонной регулировки напряжения; PHО — обмотка регулятора напряжения; — резистор базы транзистора; — резистор температурной компенсации; — ускоряющий резистор; — добавочные резисторы.

Статор 5 набран из листов электротехнической стали, собранных в пакет. На девяти зубцах статора, равномерно распределенных по внутренней окружности, надеты девять катушек трехфазной обмотки. Катушки, выполненные из провода ПЭВ-2 диаметром 1,35 мм с эмалевой изоляцией и двойным покрытием имеют по двадцать восемь витков и закреплены на зубьях клиньями из стеклотекстолита. Каждая фаза обмотки состоит из трех последовательно включенных катушек. Фазы соединены в треугольник (рис. 2, б). Концы фаз обмотки статора ОС выведены к болтам 1 (рис.2, б) клемм переменного тока, помещенным на изоляционной колодке 2 задней крышки 3 и обозначенных знаком «~». К этим же клеммам присоединены выводы выпрямителя ВП.

На вал ротора насажена шестиконечная звездочка, набранная из листов электротехнической стали, которые соединены заклепками. Опорами ротора служат шариковые подшипники 12 и 15 закрытого типа. Передняя крышка 9 стальная, к ее торцу с внутренней стороны прикреплена болтами катушка обмотки возбуждения 8, навитая на стальной каркас. Обмотка выполнена из 500 витков провода ПЭВ-2 диаметром 0,74 мм. Начало обмотки соединено с массой генератора, а конец подведен к клемме Ш. помещенной на колодке 2 задней крышки 3. Крышка 3 в прикрепленная к ней лапа отлиты из алюминиевого сплава. На торцовой пасти крышки размешены клеммы с их обозначениями. К передней крышке приварены две лапы для крепления генератора и регулировки натяжения приводного ремня.

Выпрямитель ВП (рис. 2, б) состоит из корпуса и теплоотвода, выполненных из алюминиевого сплава, и шести полупроводниковых диодов прямой 1 и обратной 2 полярности. Диоды 1 запрессованы в теплоотвод и отмечены по донышку черной краской, а диоды 2 запрессованы в корпус и маркированы красной краской. Для улучшения охлаждения корпус выпрямителя оребрен. Выпрямитель собран по трехфазной мостовой схеме. Положительный полюс выпрямителя присоединен к клемме В на колодке 2 (рис. 2, а) генератора гибким проводом. Монтажные провода выпрямителя и катушки возбуждения подведены с внешней стороны генератора и защищены планками 14.

Магнитная цепь генератора замыкается вокруг обмотки возбуждения 8 по стальной крышке 9, каркасу обмотки возбуждения, воздушному зазору, статору 5 и крышке 9. При вращении ротора под каждым зубцом сердечника статора поочередно оказывается один из полюсов ротора, в результате чего магнитный поток, проходящий через зубцы статора, изменяется по величине и направлению. Когда зубец ротора 6 находится против зубца статора, магнитный поток в зубце статора наибольший, а при положении зубца статора против паза ротора магнитный поток в зубце статора наименьший. Пересечение обмоток статора пульсирующим потоком индуктирует в них переменную э.д.с.

Генераторы Г304 и Г305 по принципу работы не отличаются от генератора Г306, однако их схемы, конструкции и материалы не одинаковы. Генератор Г306 одностороннего возбуждения, а генераторы Г304 и Г305 — двухстороннего, так как имеют две катушки обмотки возбуждения, помещенные каждая в одну из стальных крышек и соединенные между собой параллельно. Масса и габариты генераторов Г304 и Г305 несколько больше, чем генератора Г306.

Описанные генераторы работают с реле-регуляторами типа РР362, РР362-Б.

При техническом обслуживании генераторов Г304, Г305 и Г306 необходимо следить за их чистотой, надежностью креплений, состоянием контактов, натяжением и исправностью приводного ремня.
[Гуревич А.М., Сорокин Е.М. Тракторы и автомобили. 1978г.]

Похожие материалы

Генераторы Г287-Д, Г275 и Г285

Генератор Г287-Д — трехфазный, синхронный, с электромагнитным возбуждением, со встроенным кремниевым выпрямителем. Он служит для питания потребителей электроэнергии трак¬тора и для подзарядки аккумуляторных батарей. Генератор работает в комплекте с реле-регулятором РР385-Б. На дизеле ЯМЗ-240Б он установлен на специальном кронштейне и приводится в действие от шкива вентилятора клиновым ремнем, общим для генератора и компрессора.
ГД-287Д
Рис. 1. Генератор: 1 — контактные кольца; 2 и 11 — подшипники; 3, 6, 17 и 19 — крышки; 4 — щетки; 5 — щеткодержатель; 7 — обмотка статора; 8 — якорь; 9 — статор; 10 — ротор; 12 — шкив; 13 — вал ротора; 14 — втулка; 15 — обмотка возбуждения; 16 — крыльчатка вентилятора; 18 — выпрямительный блок.

Корпус генератора состоит из крышек 17 и 19 (рис. 1) и статора 9, соединенных болтами. На внутренней поверхности статора уложена трехфазная обмотка, соединенная по схеме «звезда». Вал 13 ротора вращается на двух шарикоподшипниках, установленных в крышках. На него напрессована втулка 14 с обмоткой возбуждения 15. К втулке прилегают полюса 8, перекрывающие обмотку возбуждения. На изоляционной втулке, посаженной на шлицы вала ротора, установлены контактные кольца 1, к которым припаяны концы обмотки возбуждения. На сегментной шпонке одного из концов вала ротора размещен и закреплен гайкой приводной шкив 12.
В крышке 19 закреплен винтами выпрямительный блок 18 и щеткодержатель 5 с крышкой 6, щетками 4 и пружинами. Винт «массы» и вывод «+» на торце крышки 19 соединяют соответственно с корпусом реле-регулятора и амперметром, а вывод «Ш» на торце щеткодержателя — с зажимом «Ш» реле-регулятора.
Ниже приведены технические характеристики генераторов, устанавливаемых на тракторах «Кировец».
Генераторы тракторов Кировец
Значение номинальной частоты вращения 1020 мин-1 получено при температуре окружающей среды и генератора 15…35°С и напряжении в цепи 14 В, а значение 1400 — при температуре 15…25°С и напряжении 12,5 В.

Реле-регулятор РР385-Б предназначено для автоматического регулирования напряжения в сети в пределах 13,5…14,3 В летом и 14,3…15,5 В зимой.
Схема реле-регулятора
Рис. 2. Схема реле-регулятора:
КV — регулятор напряжения; КА — реле защиты транзистора; VT — транзистор; э, к, б — электроды транзистора соответственно эмиттер, коллектор, база; VD1 — входной диод; VD2 — гасящий диод; R5 — резистор качества; R1 — резистор переключателя посезонной регулировки. RK — термокомпенсационный резистор; R3 — дополнительный резистор; R4 — резистор базы; R2 — ускоряющий резистор; SA — переключатель посезонной регулировки; В, Ш, СК1, СК2, СКЗ, СК4 — зажимы.

Основные его части: блок электромагнитных реле, в котором расположены регулятор KV напряжения (рис. 2), реле КА защиты транзистора, резисторы R1, R2, R3, R4, R5 и RK, отсек корпуса, в котором размещены транзистор VT и диоды VD1 и VD2, переключатель посезонной регулировки SA. Регулятор напряжения KV — электромагнитное реле с двумя парами контактов. Электромагнитное реле КА — с одной парой нормально разомкнутых контактов, оно защищает транзистор от коротких замыканий в цепи питания обмотки возбуждения. Нормально разомкнутые контакты обоих реле включены между зажимом В и базой транзистора, что позволяет управлять транзистором.
Транзистор представляет собой полупроводниковый усилительный элемент с тремя выводами э — эмиттер, к — коллектор и б — база. Он непосредственно регулирует ток возбуждения генератора, а следовательно, и его напряжение.

Выпрямитель В-150 — селенового типа, предназначен для совместной работы с генераторами Г275 и Г285, не имеющими встроенных выпрямителей тока. Он представляет собой набор элементов, собранных на двух шпильках 8 (рис. 3) между кронштейнами 12 и закрытых кожухом 11. Каждый элемент выпрямителя установлен на изоляционной шайбе 7. Он состоит из прямоугольной алюминиевой 6, контактной 2 и дистанционных стальных 7 шайб, а также из соединительных латунных перемычек 3. На одну из сторон шайбы 6 нанесен полупроводниковый слой 5 селена, на который напылен «запирающий» слой 4, состоящий из сплава металлов олова, кадмия и висмута.

Рабочие элементы обладают свойством хорошо проводить ток в направлении от сплава металлов к селену и плохо — в обратном направлении. Обратный ток выпрямителя не должен превышать 2,3 А. Ток со стороны сплава металлов снимается контактной упругой шайбой 2, а со стороны селенового слоя — стальной шайбой 7. На торцах кожуха 11 выполнены три зажима 9 переменного то¬ка и два зажима 10 постоянного тока.
Выпрямитель генератора трактора Кировец
Рис. 3. Выпрямитель: 1 — изоляционная шайба; 2 — контактная шайба; 3 — перемычка; 4 — слой сплава металлов; 5 — слой селена; 6 — шайба; 7 — дистанционная шайба; 8 — шпилька; 9 — зажимы переменного тока; 10 — зажим постоянного тока; 11 — кожух; 12 — кронштейн.
[Безверхний Л.И., Островский А.И. Тракторы »Кировец». 1986г.]

Похожие материалы

Электростартеры

Тип системы пуска определяет используемая энергия и конструкция основного пускового устройства — стартера. Для пуска тракторных дизелей используют системы электростартерного пуска и пусковые бензиновые двигатели, пуск которых также может осуществляться электростартерами.

Система электростартерного пуска надежна в работе, обеспечивает дистанционное управление и возможность автоматизации процесса пуска двигателя с помощью электротехнических устройств.

Источником энергии в системах электростартерного пуска является стартерная свинцовая аккумуляторная батарея. В электростартерах используют электродвигатели постоянного тока. Характеристики стартерного электропривода с электродвигателями постоянного тока последовательного, смешанного возбуждения и с возбуждением от постоянных магнитов хорошо согласуются со сложным характером нагрузки, создаваемой поршневым двигателем при пуске.

Типовая схема системы электростартерного пуска с дистанционным управлением приведена на рис. 1.
Схема управления электростартером
Рис. 1. Типовая схема управления электростартером: 1 — аккумуляторная батарея; 2 — контактный болт; 3 — контактный подвижный диск; 4 — выключатель стартера; 5 — втягивающая обмотка тягового реле; 6 — удерживающая обмотка тягового реле; 7 — якорь тягового реле; 8 — шток; 9 — рычаг привода; 10 — поводковая муфта; 11 — муфта свободного хода; 12 — шестерня привода; 13 — зубчатый венец маховика; 14 — стартерный электродвигатель; 15 — якорь стартерного электродвигателя; 16 — последовательная обмотка возбуждения; 17- параллельная обмотка возбуждения

Стартерный электродвигатель 14 получает питание от аккумуляторной батареи 1 через замкнутые контакты тягового электромагнитного реле. Тяговое реле, дополнительное реле и реле блокировки обеспечивают дистанционное включение, автоматическое отключение стартера от аккумуляторной батареи после пуска двигателя и предотвращают включение стартера при работающем двигателе.

При замыкании контактов выключателя 4 стартера, дополнительного реле или реле блокировки втягивающая 5 и удерживающая 6 обмотки тяговою реле подключаются к аккумуляторной батарее 1. Якорь 7 тягового реле притягивается к сердечнику электромагнита и с помощью штока 8 и рычага 9 механизма привода вводит шестерню 12 в зацепление зубчатым венцом 13 маховика двигателя.

В конце хода якоря 7 контактный диск 3 замыкает силовые контактные болты 2 и стартерный электродвигатель 14, получая питание от аккумуляторной батареи, приводит во вращение коленчатый вал двигателя.

После пуска двигателя муфта свободного хода 11 предотвращает передачу вращающею момент от маховика к валу якоря электродвигателя. Шестерня привода из зацепления с венцом маховика не выходит до тех пор, пока замкнуты контакты выключателя 4. При размыкании контактов выключателя 4 втягивающая и удерживающая обмотки тягового реле подключается к аккумуляторной батарее последовательно через силовые контакты 2. Так как число витков у обеих обмоток одинаковое и по ним при последовательном соединении проходит один и тот же ток, обмотки при разомкнутых контактах выключателя 4 создают два равных, по противоположно направленных магнитных потока. Сердечник электромагнита размагничивается и возвратная пружина перемещает якорь 7 реле в исходное нерабочее положение и выводит шестерню из зацепления с венцом маховика. При этом размыкаются и силовые контакты. При непосредственном управлении стартер включается трактористом с помощью рычага.

Конструкция стартера. Основными узлами и деталями электростартера (рис. 2.) являются якорь 39 с обмоткой 43 и коллектором 2, механизм привода с муфтой свободного хода 27 и шестерней 31, тяговое электромагнитное реле 15, корпус 42 с полюсами 41 и ка¬тушками 40, щеточный узел с щеткодержателями 45, щетками 47 и щеточными пружинами 46.
Электростартер
Рис. 2. Электростартер: 1 — крышка со стороны коллектора; 2 — коллектор на пластмассе; 3 — защитный кожух; 4 — изоляционная втулка; 5 — вывод стартерного электродвигателя; 6 — соединительная пластина; 7 — контактный болт; 6 и 20 — возвратные пружины; 9 — крышка тягового реле; 10 — изоляционная шайба; 11 — контактный подвижный диск; 12 — изоляционная втулка; 13 — пружина; 14 — шток; 15 — тяговое реле; 16 — удерживающая обмотка; 17 — втягивающая обмотка; 18 — якорь реле; 19 — латунная втулка; 21 — упорная шайба; 22 — тяга; 23 — основание реле; 24 — рычаг привода; 25 — ось рычага; 26 — крышка со стороны привода; 27 — муфта свободного хода; 28 — обойма ведущая; 29 — обойма ведомая; 30 — ролик; 31 — шестерня привода; 32 — упорное кольцо; 33 — вкладыш подшипника; 54 — направляющая шлицевая втулка ведущей обоймы; 35 — буферная пружина; 36 — поводковая муфта; 37 — запорное кольцо; 38 — промежуточная опора; 39 — якорь; 40 — катушка возбуждения; 41 — полюс; 42 — корпус; 43 — обмотка якоря; 44 — бандаж; 45 — щеткодержатель; 46 — пружина щеткодержателя: 47 щетка; 48 — вал якоря

Якорь стартерного электродвигателя представляет собой пакет стальных пластин (шихтованный сердечник) с пазами для размещения обмотки. Применение шихтованного сердечника позволяет уменьшить потери на вихревые токи. Пакет якоря напрессован на участок вала с продольной накаткой. Вал вращается в двух или трех бронзографитовых подшипниках или подшипниках из порошкового материала. Подшипники скольжения размещены в крышках со стороны привода, коллектора и в промежуточной опоре.

В стартерных электродвигателях применяют простые волновые обмотки, которые выполняют в виде одно- и двухвитковых секций. Секция представляет собой часть обмотки, расположенную между следующими друг за другом по ходу обмотки коллекторными пластинами (ламелями). Концы одной секции и начало следующей присоединяются к одной коллекторной пластине.

Концы секций укладывают в прорези петушков коллекторных пластин и для лучшего крепления чеканят и пропаивают. Число коллекторных пластин равно числу пазов. В четырех полюсных электрических машинах с волновой обмоткой якоря число пазов должно быть нечетным и в тракторных стартерах находится в пределах от 19 до 29.

Одновитковые секции волновых обмоток выполняют из прямоугольного неизолированного медного провода. Для изоляции проводников в полузакрытых прямоугольных пазах друг от друга и от пакета якоря применяют электроизоляционный картон. Преимуществом прямоугольного паза является высокий коэффициент заполнения его прямоугольным проводом. Однако зубцы пакета якоря при такой форме паза имеют сложную конфигурацию и неравномерное распределение магнитной индукции по высоте. В полузакрытые пазы секции закладывают с торца пакета якоря.

Двухвитковые секции имеют стартеры малой мощности, устанавливаемые на пусковых бензиновых двигателях. Обмотки с двухвитковыми секциями наматывают круглым изолированным проводом.

На лобовые части обмотки якоря накладывают бандажи. Бандаж состоит из картонной прокладки, на которую намотана проволока или хлопчатобумажный шнур. Витки бандажа скрепляют пайкой или скобами, укладываемыми на прокладку перед намоткой проволоки или шнура. Лобовые части секции одна от другой изолируют пластмассовыми трубками или электроизоляционным картоном.

На тракторных стартерах применяют коллекторы: цилиндрические сборные, цилиндрические с пластмассовым корпусом и торцовые на пластмассе.

Сборный цилиндрический коллектор набирают из отдельных медных пластин (ламелей) и изолирующих прокладок и закрепляют металлическими и миканитовыми конусными кольцами по боковым опорным поверхностям при помощи гайки. От стальной втулки медные пластины изолирует миканитовая цилиндрическая втулка.

Цилиндрические коллекторы с пластмассовым корпусом также набирают в виде пакета медных пластин и в специальной форме запрессовывают в пластмассу. Пластмассовый корпус плотно охватывает сопряженные поверхности пакета коллекторных пластин, обеспечивая высокую прочность конструкции.

Рабочая поверхность торцового коллектора находится в плоскости, перпендикулярной оси вращения якоря. При использовании торцового коллектора уменьшается расход меди и осевая длина стартера.

Коллекторы так же, как и пакеты якорей напрессовываются на участок вала с продольной накаткой или насечкой.

Корпуса электростартеров изготовляют из трубы или стальной полосы, которую сворачивают в трубу с последующей сваркой в месте стыка. Корпус является частью магнитной системы электродвигателя. К корпусу одним или двумя винтами крепят четыре полюса. Накаждом полюсе располагают одну (параллельную или последовательную) катушку возбуждения.

Стартеры смешанного возбуждения имеют по три катушки в последовательной обмотке и по одной — в параллельной обмотке (рис. 3. а-в). Катушки последовательной обмотки соединены между со¬бой последовательно. В более мощных стартерах (рис. 3. г и д) с последовательным возбуждением катушки соединены попарно — параллельно.
Схемы внутренних соединений в тракторных стартерах
Рис. 3. Схемы внутренних соединений в тракторных стартерах: а, б и в — смешанного возбуждения; г и д — последовательного возбуждения

Катушки последовательной обмотки возбуждения имеют несколько витков. Витки катушки разделены электроизоляционным картоном толщиной 0,2…0,4 мм. Для намотки катушек параллельной обмотки возбуждения в стартерах смешанного возбуждения используют круглый изолированный провод с эмалевой изоляцией. Внешняя изоляция может быть выполнена из хлопчатобумажной ленты с последующей пропиткой лаком или из полимерных материалов.

Корпус стартера служит несущей конструкцией для крышек, воспринимает крутящий момент и передает его элементам крепления стартера на двигателе. Крепление крышек к корпусу стартера осуществляется с помощью стяжных болтов. Для ввинчивания стяжных болтов в крышке со стороны привода предусмотрены приливы.
Алюминиевые или чугунные крышки со стороны привода имеют установочные фланцы с двумя или тремя отверстиями под болты крепления стартера на двигателе. В полости крышки располагают механизм привода с муфтой свободного хода. Отверстие в крышке позволяет шестерне привода входить в зацепление с венцом маховика.

В стартерах большой мощности крышка со стороны привода не имеет крепежного фланца и крепится к промежуточной опоре. Стартер закрепляют на специальном приливе двигателя с углублением под наружный диаметр.

Промежуточную опору обычно устанавливают в стартерах с диаметром корпуса 112 мм и более, что позволяет уменьшить прогиб вала и степень изнашивания подшипников.

В стартерах с цилиндрическими коллекторами на крышках со стороны коллектора закреплены четыре коробчатых щеткодержателя радиального типа с щетками и спиральными пружинами. В щеткодержателях щетки должны перемещаться свободно, но без значительных боковых колебаний. Щетки торцовых коллекторов размещают в пластмассовых или металлических траверсах и прижимают к рабочей поверхности коллектора витыми цилиндрическими пружинами.

В тракторных стартерах применяют меднографитовые щетки марок МГС01 (трапецеидальные) и МГСОЛ при номинальном напряжении 12 В.

Волновая обмотка якоря имеет две параллельных ветви независимо от числа полюсов и позволяет иметь только две щетки. Для уменьшения плотности тока в щетке в стартерах устанавливают число щеток, равное числу полюсов. С этой же целью в мощных стартерах устанавливают в каждом щеткодержателе по две щетки (всего восемь щеток).

Приводные механизмы имеют роликовые (3-5 роликов) бесплунжерные или храповые муфты свободного хода. Они обеспечивают ввод и удержание шестерни стартера в зацеплении с венцом маховика во время пуска двигателя, передачу необходимого вращающего момента коленчатому валу и предохранение якоря стартерного электродвигателя от разноса вращающимся маховиком работающего двигателя.

При передаче крутящего момента от стартера к двигателю ведущая обойма 12 (рис. 4.) роликовой муфты поворачивается относительно неподвижной ведомой обоймы 77 с шестерней, ролики 1 под действием прижимных пружин 3 и сил трения между обоймами и роликами перемещаются в узкую часть клиновидного пространства и муфта заклинивается. Надежный контакт роликов с рабочими поверхностями обойм в бесплунжерных муфтах свободного хода обеспечивается подпружиненными индивидуальными Г-образными толкателями 2.

Силовые контакты тягового реле замыкаются раньше, чем шестерня полностью войдет в зацепление с венцом маховика. Дальнейшее перемещение шестерни до упорного кольца на валу происходит под действием осевого усилия в винтовых шлицах вала якоря и направляющей втулки ведущей обоймы муфты свободного хода.
Бесплунжерная четырехроликовая муфта свободного хода и детали приводного механизма
Рис. 4. Бесплунжерная четырехроликовая муфта свободного хода и детали приводного механизма: 1 — ролик; 2 — толкатель Г-образный; 3 — прижимная пружина; 4 и 7 — замковые кольца; 5 и 10 — опорные чашки; 6 пружина; 8 — поводковая муфта; 9 — буферная пружина; 11 — центрирующее кольцо; 12 — ведущая наружная обойма со шлицевой втулкой; 13 — держатель пружин; 14 — специальная шайба; 15 — войлочный уплотнитель; 16 — кожух муфты; 17 — ведомая обойма с шестерней; 18 — втулки

В случае, если зубья шестерни упираются в венец маховика, якорь тягового реле продолжает движение, сжимая буферную пружину, и замыкает силовые контакты. Якорь стартера вместе с приводом начинает вращаться и, как только зуб шестерни установится против впадины зубчатого венца маховика, шестерня под действием сжатой буферной пружины и осевого усилия в шлицах входит в зацепление с венцом маховика.

После пуска двигателя частота вращения ведомой обоймы с шестерней привода превышает частоту вращения ведущей обоймы. Ролики перемещаются в широкую часть клиновидного пространства между обоймами и муфта расклинивается.

Храповая муфта свободного хода (рис. 5.) обеспечивает более полное разъединение стартера и двигателя при меньших нагрузках на силовые элементы привода.
Приводной механизм с храповой муфтой свободного хода
Рис. 5. Приводной механизм с храповой муфтой свободного хода: 1 — вкладыш; 2 — шестерня; 3 — сегмент (сухарик); 4 — направляющий штифт; 5 и 15 — замковые кольца; 6 — ведомый храповик; 7 — коническая втулка; 8 — ведущий храповик; 9 и 13 — шайбы; 10 — пружина; 11 — корпус; 12 — шлицевая направляющая втулка; 14 — буферное резиновое кольцо; 15 — замковое кольцо

При включении стартера рычаг привода через корпус 11 перемещает шлицевую направляющую втулку 12 вместе с ведущим 8 и ведомым 6 храповиками по шлицам вала и вводит шестерню в зацепление с венцом маховика. Во время работы стартера крутящий момент к венцу маховика передается через шлицевую втулку 12, ведущий 8 и ведомый 6 храповики и шестерню 2. Осевое усилие, возникающее в винтовых шлицах направляющей втулки 12 и ведущего храповика 8, воспринимается буферным резиновым кольцом 14.

Перемещение ведущего храповика 8 по винтовым птицам за счет сжатия пружины 10 обеспечивает поворот ведомого храповика 6 с шестерней на 15…30° и ввод шестерни в зацепление с венцом маховика двигателя.
Если частота вращения шестерни, ведомого и ведущего храповиков превышает частоту вращения направляющей втулки 12, ведущий храповик 8 за счет усилия в винтовых шлицах отходит от ведомого храповика 6 и шестерня вращается вхолостую. Одновременно пластмассовые сегменты 3 под действием центробежных сил перемещаются по направляющим штифтам 4 в радиальном направлении и удерживают храповой механизм в разомкнутом состоянии до тех пор, пока осевое усилие в клиновом соединении конических поверхностей сегментов и втулки 7, создаваемое центробежными силами, будет превышать усилие пружины 10.

Во время отдельных циклов сгорания топлива в цилиндрах двигателя шестерня остается в зацеплении с венцом маховика и может снова передавать крутящий момент от электродвигателя после выравнивая частот вращения ведущего и ведомого храповиков. Шестерня 2 выходит из зацепления только после выключения тягового реле стартера.

В стартерах с дополнительным встроенным редуктором (рис. 6) последний размещают между приводом и валом электродвигателя. Редуктор состоит из пластмассовой эпициклической шестерни, закрепленной в корпусе редуктора 9, в котором на подшипнике вращается водило 10 с шестерня мисателлитам и 11. Через шестерни-сателлиты и солнечную шестерню якоря электродвигателя момент от стартера передастся валу привода, а через него на маховик двигателя.

Электромагнитные тяговые реле крепятся на корпусе или приводной крышке непосредственно или с использованием дополнительных крепежных элементов. В двухобмоточных реле втягивающая обмотка вместе с удерживающей обмоткой обеспечивает необходимую притягивающую силу, когда зазор между якорем и сердечником реле максимальный. Втягивающая обмотка подключена параллельно силовым контактам. При замыкании контактных болтов подвижным диском втягивающая обмотка замыкается накоротко и выключается из работы. Удерживающая обмотка, рассчитанная лишь на удержание контактов реле в замкнутом состоянии, намотана проводом меньшего сечения и имеет непосредственный вывод на массу. Обмотки расположены на латунной втулке, в которой свободно перемещается якорь реле.

При разделенной контактной системе тягового реле стартера (см. рис. 2) шток 14, на котором установлен контактный диск 11, не соединен с якорем 18 реле. В контактной системе установлена пружина 13 прижатия подвижного диска 11 к контактам и возвратная пружина 8. Якорь реле перемещается в исходное нерабочее положение при отключении стартера возвратной пружиной 20 привода. С приводным механизмом тяговое реле связано рычагом 24. Два пальца нижней разветвленной части рычага соединены с поводковой муфтой 36.
Электростартер с дополнительным встроенным редуктором
Рис. 6. Электростартер с дополнительным встроенным редуктором: 1 — крышка со стороны коллектора; 2 — коллектор; 3 — щеткодержатель; 4 — корпус стартера; 5 — тяговое реле; 6 — рычаг включения привода; 7 — муфта свободного хода; 8 — крышка со стороны привода; 9 — корпус редуктора с эпициклической шестерней; 10 — водило; 11 — шестерни-сателлиты.
[Тракторы. Конструкция. Под общ. ред. И. П. Ксеневича, В. М. Шарипова.2001г.]

Похожие материалы